Organizacao de

Computadores 1

5.1 — Linguagem de Montagem (Assembly)

Prof. Luiz Gustavo A. Martins

" A
Sistemas Numeéricos

+ Sistema Decimal: sistema natural do homem.

No assembly um numero decimal pode terminar com um d.
x Ex: 64223 ou 64223d ou 64223D.

+ Sistema Binario: representado por bits (0 ou 1)
Agrupamento dos bits:
x Nibble: 4 bits
x Byte: 8 bits
x Palavra (word): 16 bits
x Palavra dupla (double word): 32 bits
No assembly um numero binario deve terminar com um b.
x Ex: 1110101b ou 1110101B.

4+ Sistema Hexadecimal:

1 algarismo hexadecimal = 4 bits (ex: 0011]1101b = 3Dh)

No assembly um numero hexadecimal deve comegar com um
numeral decimal e terminar com um h.

x Ex: 1Fh, OFFAh.

" J
Programacao

+ Computador executa programas criados pelos
programadores.

Programas = conjunto de instrucoes.

+ Instrucdes dizem ao computador o que fazer
para resolver determinado problema.

+ Elementos de uma instrucao:
Opcode: define a operacao a ser realizada

Operandos: dados necessarios para realizar a
operacao desejada.

" J
Arquitetura 8086

CPU Registradores de 16 bits

Memoria | Memoria limitada a 1MVIB

Dividida em segmentos 64kb

Somente modo real

Bytes na memaria ndao possuem
endereco unico

Organizacao little endian

" J
Arquitetura 8086

o Mapeamento da memoria

0x00000 - Ox003FF | Tabela de interrupgdes (ISR)

0x00400 - 0x005FF | Area de BIOS (BDA)

0x00600 - OX9FFFF | Area livre

OxAQ0000 - OxAFFFF | Membdria de video EGA/VGA

OxB0O00O - OxB7FFF | Memobria de texto monocromatico

OxB8000 - OxBFFFF | Membria de video CGA

0xC0000 - OXDFFFF | ROM Iinstalada

OxEOQOOO - OxFDFFF | ROM fixa

OxFEOQO - OXxFFFFF | ROM da BIOS

" J
Registradores (Processador 8088/8086)

+ CPU possui 14 registradores de 16 bits visiveis.

+ 4 registradores de uso geral:

AX (Acumulador): armazena operandos e resultados dos calculos
aritméticos e logicos.

BX (Base): armazena enderecos indiretos.

CX (Contador): conta iteracoes de loops ou especifica o n° de
caracteres de uma string.

DX (Dados): armazena overflow e endereco de E/S.

Podem ser usados como registradores de 8 bits:
x Ex: AH e AL (byte alto e byte baixo de AX).

AX AH aL |
ex| en | L |
ex| con | oL 1
DX I DL 1

" J
Registradores (Processador 8088/8086)

+4 registradores de segmento:

CS (Segmento de Codigo): contem o endereco da area
com as instrugoes de maquina em execucao.

DS (Segmento de Dados): contém o endereco da area
com os dados do programa.
x Geralmente aponta para as variaveis globais do programa.

SS (Segmento de Pilha): contém o endereco da area
com a pilha. Que armazena informagdes importantes
sobre o0 estado da maquina, variaveis locais, enderecos
de retorno e parametros de subrotinas.

ES (Segmento Extra): utilizado para ganhar acesso a
alguma area da memoria quando nao € possivel usar os
outros registradores de segmento.

x Ex: transferéncias de bloco de dados.

" J
Registradores (Processador 8088/8086)

+ 5 registradores de offset:

PC ou IP (Instruction Pointer): usado em conjunto com
o CS para apontar a proxima instrucao.

Sl (source index) e DI (destiny index): utilizados para
mover blocos de bytes de um lugar (Sl) para outro (DI)
e como ponteiros para enderecamento (junto com os
registradores CS, DS, SS e ES).

BP (Base Pointer): usado em conjunto com o SS para
apontar a base da pilha.

x Similar ao registrador BX.

x Usado para acessar parametros e variaveis locais.

SP (Stack Pointer): usado em conjunto com o SS para
apontar o topo da pilha.

" J
Registradores (Processador 8088/8086)

+ 1 registrador de estado do processador (PSW) :
Registrador especial composto por sinalizadores (flags) que ajudam
a determinar o estado atual do processador.
x Colecao de valores de 1 bit.

Apenas 9 bits sao utilizados.

x 4 mais utilizados: zF - zero; cF - carry ("vai um®) ou borrow (“vem um”);
SF - sinal; e oF - overflow ou underflow.

Drwertlow
Direqao —
Intermupgao
Trace
Sinal
Zern

Camy auxiliar

MNao
usado

Paridada

Camy

"
Organizacao dos Registradores — Familia Intel

General Registers General Registers
AX [Accumulator EAX AX
BX Baze EFBX BEX
CX Count ECX CX
DX Data EDX DX

Pointer & Index ESP SP
5P |Stack Pointer ERF EP
EFP |Baze Pointer ESI] |
SI |Source Index EDI DI
DI | Dest Index

Program Status

Segment FLAGS Register
Cs Code Instruction Pointer
Ds Data
55 Stack 80386 — Pentium Il
ES Exitra (32 bltS)

Program Status
8086 Instr Ptr
(16 bits) Flags

" J
Segmentacao da Memoria

+ Ponto de vista fisico: memoria € homogénea.
Processador 8086 endereca até 220 bytes = 1MByte.
+ Ponto de vista l6gico: memoria € dividida em
areas denominadas segmentos.

Expansao na capacidade de acesso a memoria.
Organizacao bem mais eficiente.

+ Cada segmento no 8086 € uma area de memoria
com no minimo 64 KB e no maximo 1MB.

+ Registradores de segmento indicam o endereco
inicial do segmento.

"

Segmentacao da Memoria

OO0
SEFEMH ---_'-""‘-—-—._._I___I_H_I_I_-_
de codigo = |
— - 8§ | s Registradores
d:mshil DE I de segmento
/ | ES If
Segmento |
de dados

FFFFF:

" J
Exemplo de Utilizacao do Segmento

+ Todos os acessos a instrucoes sao feitas automaticamente
no segmento de codigo.
Suponha que CS contenha o valor 2800h € PC o valor 0153h.
Obtencao do endereco efetivo (EA):

Q00
* |Inclusao de um zero a direita do
valor do CS (endereco base). [2800 les
- Inclus3o de 4 bits. 28000 i
- Enderegos possuem 20 bits. g —— L 015 [P
« Soma do deslocamento (offset) ¥ 28000+
ao endereco do segmento. 0153
28153

28000h + 0153h = 28153h
CSx16 PC EA 2800:0153 = 28153

hegmento (et

FFFFF-

" A
Exercicios

+ Resolva as seguintes questoes:

Dado CS = 1E00h e IP = 152Fh, em qual
posicao de memoria sera buscada a proxima
instrucao?

Sendo DS = FO55h e DI = 5FFEh, qual a
posicao da memoria esta o dado referenciado
por DS:DI?

" J
Linguagem Assembly

+ Linguagem de montagem (assembly) € uma forma
de representar textualmente o conjunto de
instrucdes de maquina (ISA) do computador.

Cada arquitetura possui um ISA particular, portanto, pode
ter uma linguagem assembly diferente.

+ InstrucOes sao representadas atraves de
mnemaonicos, que associam o0 home a sua funcao.

Nome da instrucao € formada por 2, 3 ou 4 letras.

Exemplos:

x ADD AH BH

ADD: comando a ser executado (adi¢ao).
AH e BH: operandos a serem somados.

x MOV AL, 25
Move o valor 25 para o registrador AL.

" J
Por que Utilizar?

+ Muito utilizado no desenvolvimento de aplicativos
gue exigem resposta em tempo real.

+ Tirar proveito de conjuntos de instrucoes
especificas dos processadores.

4+ Obter conhecimento do funcionamento do HW,
visando desenvolver SW de melhor qualidade.

Aplicativos podem precisar de maior desempenho em
partes criticas do codigo.

x Nesses trechos deve-se empregar algoritmos otimizados, com
baixa ordem de complexidade.

x Se nao atingir o tempo de resposta necessario, podemos tentar
melhorar a performance utilizando otimizagoes de baixo nivel.

"
Programa Montador (Assembler)

+ O montador traduz diretamente uma instrucao
da forma textual para a forma de codigo binario.

E sob a forma binaria que a instrucéo é carregada na
memoria e interpretada pelo processador.

+ O montador converte o programa assembly para
um programa em codigo-objeto.

+ Programas complexos sao estruturados em
maodulos.
Cada moddulo é compilado separadamente.

Os modulos objeto gerados sao reunidos pelo
ligador (linkeditor).

" J
Criacao de Programas em Assembly

4+ Ferramentas necessarias:

Editor para criar o programa-fonte.
x Qualquer editor que gere texto em ASCII (ex: notepad, edit, etc.).

Montador para transformar o codigo-fonte em um
programa-objeto.
x 1 varias ferramentas no mercado (ex: masm, nasm, tasm, etc.).

Ligador (linkeditor) para gerar o programa executavel a
partir do codigo-objeto.

+ Ferramentas desejaveis:

Depurador para acompanhar a execucao do codigo.
x Importante para encontrar erros durante a programacao.

" A
TASM — Turbo Assembler

+ Montador da Borland®.

+ Age em conjunto com o linkeditor tlink e o
debugador td.

+ Criacao de aplicativos:

Cria-se um arquivo texto (formato ASCII) com
extensao “*.asm” contendo o programas-fonte.

O montador tasm gera programas “*.obj” a partir de
programas “*.asm”.

O ligador tlink transforma os arquivos “*.obj” em
executaveis “*.exe”.

" J
Montagem sem Depuracao

+ Turbo Assembler da Borland (TASM):

Programa-fonte: exemplo.asm
Programa-objeto: exemplo.obj
Programa executavel: exemplo.exe

+ Traducao:

tasm exemplo.asm <enter>

+ Ligacao:

tlink exemplo.obj <enter>

" J
Montagem para Depuracao

+ Depuracao: acompanhamento passo a passo
da execucao (debug).

Programa executavel maior, pois inclui tabela de
simbolos.

+ Traducao:

tasm /zi exemplo.asm <enter>

+ Ligacao:

tlink /v exemplo.obj <enter>

+ Depuracao:

td exemplo.exe <enter>

"
Estrutura Basica de um Programa

+Um programa assembly deve conter as seguintes diretivas:

.model small ; define 0 modelo de memaria do programa

.stack 100h ; reserva espaco de memoria da pilha

.data ; define a area de declaracdo de constantes e
; variaveis globais (opcional)

.code ; define o inicio de um programa

nm_func proc ; inicio da execugao do programa (entry point)

nm_func endp ; final da fungao principal

end nm_func ; finaliza o programa assembly

OBS: o simbolo “;* é utilizado para incluir comentarios no
programa.

" J
Exemplo de Programa

.MODEL SMALL ; modelo de memoéria com segmentos de 64K

STACK 100 ; espag¢o de memoria para instrugdes do prog. na pilha
.DATA
Msg db “Hello Assembly ! ",0dh,0ah,'$'

.CODE ; linhas seguintes sao instrugdes do programa

Prog PROC ;Sinaliza o inicio do programa (funcao principal)

mov ax,@data ; carrega o endereco inicial do segmento de dados em AX
mov ds,ax ; carrega o valor de AX em DS

lea dx,Msg ; obtem o0 endereco efetivo de Msg

mov ah,09h ; move valor 09h para o registrador AH (apresenta string)
int 21h ; chama a interrupcao 21h (S.0.)

mov ah,4Ch ; move valor 4ch para o registrador AH (encerra programa)
int 21h ; chama a interrupcéo 21h (S.0.)

Prog ENDP ; encerra fungao principal

END Prog ;finaliza o cédigo do programa

=
Modelos de Memoria

+ Definido pela diretiva “.MODEL"

+ Os modelos de memoria podem ser classificados
nas seguintes categorias:

Tiny: codigo + dados + pilha < 64k

Small: codigo < 64k, dados < 64k

Medium: dados < 64k, cddigo de qualquer tamanho
Compact: codigo < 64k, dados de qualquer tamanho
Large: codigo e dados de qualquer tamanho.

4+ No 8086 o tamanho maximo de memodria € 1 MB.
220 = 1Mb.

"
Declaracao de Dados

+ Dados sao sempre declarados na porcao de dados do
programa, e serao acessados via segmento de dados (DS)
ou segmento extra (ES).

Feita apos a diretiva “.DATA".

+ Todas variaveis devem possuir um tipo de dado:
DB (define byte) - 8 bits
DW (define word) - 16 bits
DD (define double word) - 32 bits
DF (define far word) - 48 bits

+ Constantes podem ser declaradas pela clausula EQU.
Exemplo: LF EQU 0AH ; LF = 0A (codigo ASCII para Line Feed).

<+ Variaveis podem ou nao possuir valores iniciais.

"
Declaracao de Dados

4+ EX: .data
var1 DW 0019h
var2 DB ? ; ? Indica a nao inicializacao da variavel
var3 DB ‘a’
vard DB 24,23,22
Msg DB “Entre com o numero:”,0dh,0ah,'$*
.code
Prog:
mov al, var4 -al =24 =18h
mov al, var4+2 :; al =23 = 16h

+ Clausula DUP pode ser utilizada para duplicar um valor na
Inicializacao de uma variavel estruturada.

Ex: myvet db 1000 dup (?) ; define um vetor de 1000 bytes nao
: inicializados.

"
Declaracao de Dados

+ Quando um programa € carregado na memoria, o DOS cria
e usa um segmento de memoria de 256 bytes que contem
informacodes sobre o programa.

PSP - Program Segment Prefix
DOS coloca o endereco deste segmento nos registradores DS e ES
antes de executar o programa.

+ Problema: DS NAO contém o endereco do segmento de
dados no inicio do programa.

+ Solucao: colocar manualmente em DS o endereco correto

do segmento de dados corrente.
MOV AX,@DATA
MOV DS,AX

@DATA € o nome do segmento de dados definido em .DATA.

Assembly traduz @DATA para o endereco inicial do segmento de
dados.

=
Acesso a Dados

+ Diretiva SEG: obtém o endereco de segmento de
uma variavel.

Normalmente utilizada para obtencao do segmento de
variaveis externas ao programa.
x Nao estao no segmento de dados do programa.

Ex: MOV AX,seg MSG1 ; coloca em AX o enderecgo de
; segmento da variavel msg1

+ Diretiva OFFSET: obtéem o endereco relativo
(deslocamento) de uma variavel no segmento.

Ex: MOV DX, offset MSG1 : coloca em DX o offset do
; endereco da variavel msg1

= N
Transferéncia de Dados

+ Qualquer programa precisa movimentar dados
entre dispositivos E/S, memoria e registradores.

+ Formas de transferéncia aceitas:
Transmitir dados para um dispositivo externo.
Receber dados de um dispositivo externo.
Copiar os dados de um registrador para a pilha.
Copiar os dados da pilha para um registrador.
Copiar dados da memaoria para algum registrador.
Copiar dados de um registrador para a memoria.
Copiar os dados de registrador para registrador.

=
Transferéncia de Dados

+ Transferéncias estao sujeitas a regras e restrigoes:

NAO pode mover dados diretamente entre posicées
de memoria.
x Solugao: origem — registrador e registrador — destino.

NAO pode mover uma constante diretamente para um
registrador de segmento.
x Solucgao: usar registrador de proposito geral como intermediario.
x Ex: mov AX,@data
mov DS, AX

"
Instrucoes de E/S

+ Para a comunicacao com dispositivos externos sao
utilizados comandos especificos de E/S.

+ Comando saida (OUT): envia dado a porta E/S.

Sintaxe: OUT Port,Orig

x Port: endereco da porta de saida do dado (DX).
x Orig: registrador de origem do dado (AL, AX ou EAX).

+ Comando entrada (IN): recebe dado da porta E/S.

Sintaxe: IN Dest,Port

x Dest: registrador de destino do dado (AL, AX ou EAX).
x Port: endereco da porta de entrada do dado (DX).

"
Utilizacao da Pilha em Assembly

+ Nas arquiteturas de processadores x86, 0s
registradores SP e BP representam ponteiros da
pilha.

BP: apnta para a base da pilha.
SP: aponta para o topo da pilha.

x Seu valor é atualizado a cada operacao de insercao ou remocao na
pilha.

+ A pilha cresce de cima para baixo na memoria.
SP referencia o endereco mais elevado.

Qdo. a pilha cresce, os valores sao inseridos nos
enderecos inferiores e SP é decrementado em 2
posicoes.

x Informacao gravada na pilha ocupa 16 bits (uma palavra).

"
Instrucoes de Manipulacao da Pilha

+ Empilhamento (PUSH): coloca o conteudo do operando no
topo da pilha.
Sintaxe: PUSH Op

x Op: registrador que contém o valor a ser colocado na pilha.
x Decrementa SP e [SP] « Op.

+ Desempilhamento (POP): retira elemento do topo da pilha
e 0 coloca no operando.
Sintaxe: POP Op

x Op: registrador que recebera o valor contido no topo da pilha.
x Op < [SP] e incrementa SP.

+ Variagoes: PUSHF, PUSHA, POPF e POPA.

?F: manipula o registrador de flags.
?A: manipula os registradores DI, Sl, BP, SP, AX, BX, CX e DX.

" S
Instrucoes de Transferéncia de Dados

+ Instrucao MOV: copia dados da posicao de origem
para a posicao de destino.
Sintaxe: MOV Dest,Orig

x Dest contem o endereco de destino (memdaria ou registrador).
x Orig contém o endereco de origem (memoria ou registrador).

Ex: MOV AX,BX ; Copia BX em AX
MOV BX,1000h ; Copia 1000h em BX
MOV DX,[8000h]; Copia DS:8000h em DX

+ Existe variantes para mover blocos de dados:
MOVSB: copia n bytes da origem para o destino.

MOVSW: copia n palavras da origem para o destino.
x Adota DS:Sl como origem e ES:DI como destino.

"
Modos de Enderecamento

+ Imediato: opera com valores constantes, embutidos na
propria instrucao.

Ex: MOV AX,0 ; Carrega AX com 0
MOV BX,1000h ; Carrega BX com 1000h
MOV SI,3500h ; Carrega S| com 3500h

+ Registrador: quando envolve apenas registradores.
Ex: MOV AX,BX ; Copia BX em AX
MOV CX,Sl ; Copia Sl em CX
MOV DS,AX ; Copia AXem DS

+ Direto: faz referéncia a um endereco fixo de memoria.

Ex: MOV DX,[8000n] ; EA = DS:8000h.
x SE DS = 8000h, ENTAO DX « (88000h)

"
Modos de Enderecamento

+Indexado: utiliza os registradores BX, BP, Sl e DI
como indices.

Eles podem ser usados sozinhos ou combinados.
x Valor da soma de BX ou BP com Sl ou DI, ou com uma constante.

Ex: MOV CL,[BX]
MOV DL,[BP]
MOV DL,[BP+50]
MOV AL,[SI+100]
MOV AX,[BX+SI]
MOV AH,[BP+DI]
MOV DX,[BP+DI+300]
MOV AH,[BP+SI+2000]

= B
Acesso aos Dados

+ Um mesmo dado pode ser acessado de varios modos:

EX:

.data

TEXTO DB 'ABCDEFG’

.code

mov ax,@data
mov ds,ax
mov Si,OFFSET TEXTO + 3

mov al,

mov bx,3

mov al,

si]

TEXTO + bx]

mov bx,OFFSET TEXTO

mov al,
mov si,3
mov al,

mov di, 3

bx + 3]

texto + si]

mov al,

bx + di]
I

v
mov si,OFFSET TEXTO
mov bx, 3
mov al, [bx + si]
mov bx, OFFSET TEXTO
mov Si, 2
mov al,[bx + si + 1]
mov bx, 1
mov Si, 2
mov al, [texto + bx + si]

=
Acesso aos Dados

+ Quando for necessario explicitar o tamanho do dado a
transferir deve-se utilizar as diretivas:
BYTE PTR : transfere 8 bits.
WORD PTR: transfere 16 bits.

+ Exemplo: movimentacao de dados com 8 ou 16 bits
.data
nro dw 1234h ; little endian (00 = 34h, 01 = 12h)
.code
mov al,byte ptr [nro] ; al = 34h
mov ah,byte ptr [nro+1] ;ah = 12h
mov bx,word ptr [nro] ;bx = 1234h
mov cx,word ptr [nro+1] ;cx = 0012h

"
Instrucoes Aritmeéticas

+Instrucao NEG: inverte o sinal do valor aritmetico

especificado (utilizando o complemento de 2).
EX: NEG AL
NEG AX

NEG byte ptr [BX+SI]
+Instrucoes ADD e ADC: soma os dois operandos,
colocando o resultado no primeiro operando.

ADC também soma o bit Carry, usado para o “vai 17,
possibilitando formar dados maiores.

Pode ser com 8 ou 16 bits (depende do operando).
Ex: ADD BX,SI

ADC AH,[BP+SI+3]

" S
Exemplo: Soma de 2 n° Extensos

.model small

.stack 100h

.data
nro1 dd 00012345h
nro2 dd 00054321h
soma dd 00000000h

.code

mov ax,@data

mov ds,ax ; obtém o segmento de dados

mov ax, word ptr[nro1] ;ax = 2345h (byte — significativo de NRO1)
mov dx, word ptr [nro1+ 2] ;dx = 0001h (byte + significativo de NRO1)
add ax,word ptr[nro2] ;ax = 2345h + 4321h

adc dx,word ptr [nro2+2] ;dx = 0001h + 0005h + 0000h (bit CARRY)
mov word ptr [soma],ax ; guarda byte — significativo de SOMA

mov word ptr [soma+2],dx ; guarda byte + significativo de SOMA

"
Instrucoes Aritmeéticas

+ Instrucoes SUB e SBB: subtrai dois operandos, colocando
o resultado no primeiro operando.

SBB subtrai também o valor do bit Carry, tornando possivel a
operacao de “vem um” (borrow) com n® maiores.

Ex: SUB BX,DX
SBB AX,[BX+DI]

+ Instrucoes MUL e IMUL: multiplica o acumulador (AX ou
AL) por um operando na memaoria ou em outro registrador.
Escolha do ACC depende do tamanho do operando multiplicador.
MUL ¢é usada para numeros sem sinal (soO +).
IMUL aceita numeros inteiros (+ ou -).
Resultado € guardado em ACC maior (AH - AX — DX e AX).
EX: MUL CL
MUL word ptr [SI]
IMUL DX

"
Instrucoes Aritmeéticas

+ Instrucoes DIV e IDIV: divide o acumulador (AX ou
DX e AX) por um operando de 8 ou 16 bits.
DIV € usada para numeros sem sinal (sO +).
IDIV aceita numeros inteiros (+ ou -).

Dividendo € definido pelo tamanho do divisor.
x Divisor de 8 bits = AX + Op —»> AL e o resto —» AH.
x Divisor de 16 bits = DX:AX - Op —> AX e o resto — DX.

Se quociente nao cabe no registrador, a operagao gera
um estouro de divisao (divide overflow).

Ex: DIV CL
IDIV byte ptr [BP+4]

"
Instrucoes Aritmeéticas

+Instrucoes INC e DEC: incrementa ou decrementa
de uma unidade o operando especificado.
Bit Zero ¢ afetado, possibilitando implementar contadores.

EXx: Preencher a tela com 2000 caracteres em branco.
MOV DX,2000 ; N°de bytes a serem enviados
ENVIA: MOV AL, 20h ; 20h é o codigo ASCII do caractere “ ”.
CALL OUTCHAR ; Envia o caractere para o video
DEC DX : Decrementa o contador
JNZ ENVIA ; Pula se nao chegou a zero

Instrucdoes INC e DEC também podem ser usadas para
Implementar ponteiros para posicoes de memoria.
% Util quando queremos manipular dados seqiienciais.

"
Instrucoes Aritmeéticas

+Instrucao CMP: comparar dois valores.

Realiza uma subtracao entre os operandos,
alterando os valores dos flags necessarios

Exemplos:
CMP AL,57H ; Compara o conteudo de AL com
57h.
CMP DI,BX ; Compara os conteudos de DI e BX.
CMP [SI],AX ; Compara uma palavra gravada em

: DS:Sl, com o conteudo de AX.

CMP CH,[SI+BX+3] ; Compara o conteudo de CH com
; 0 byte gravado em DS:SI+BX+3

"
Instrucoes Logicas

+Instrucao NOT: inverte todos os bits do dado.
Operacgao unaria (somente um operando).
Bit1vira0e bit0vira1.
Sintaxe: NOT Op

+ Instrucoes AND, OR e XOR: realiza as operacoes
|6gicas tradicionais “E”, "OU” e “OU exclusivo’.
OperacgoOes binarias (possuem 2 operandos).

AND pode ser usada para separar os bits de interesse.
x 2° operando é a mascara de bits.

OR pode ser usada para incluir bits 1 ao operando.
Ex: AND AL,OFh ; conversdo ASCIlI — N° inteiro.
OR AL, 30h ; conversao N° inteiro —» ASCII.

"
Deslocamentos € Rotacoes

+ Instrucoes SAL e SAR: realiza o deslocamento aritmético N
posicoes para a esquerda (SAL) ou para a direita (SAR).

Bit + a direita recebe zero, bit + a esquerda recebe o bit do sinal

+ Instrugoes SHL e SHR: realiza o deslocamento l6gico N
posicoes para a esquerda (SHL) ou direita (SHR).

Novo bit recebe zero.

+ Instrucoes ROL e ROR: rotaciona os bits do operando para
a esquerda ou direita N posicoes.
RCL e RCR sao variagcdes que incluem o bit Carry na rotagao.

+ Aspectos Gerais:

Sintaxe: ??? Op,N
x ??7?: instrugao a ser realizada.
x Op: operando que sofrera a operacao (deslocamento ou rotagao).
x N: quantidade de bits deslocados ou rotacionados (1 ou valor contido em CL).

Bit eliminado vai para o bit Carry, sobrepondo seu valor anterior.

"
Deslocamentos € Rotacoes

Deslocamento
Logico

Deslocamento
Aritmético

Rotacao
Simples

OF/"\:/"‘!/"‘A/"‘;/"‘&

CF

X
g

CF

CF

T T

CF

"
e o @ CF
SN

|
RS

"
Instrucoes de Chamada de Sub-rotinas

+Instrucao CALL: chama uma sub-rotina, alterando o
fluxo normal de execucao.

Endereco de retorno € colocado na pilha pela instrucao.

x Quando uma instrucao CALL é executada, o conteudo de PC é
armazenado na pilha (empilhado).

Sintaxe: CALL Proc

x Proc: nome do procedimento (sub-rotina) a ser executado.

+Instrucao RET: encerra uma sub-rotina, retomando
a execucao do programa chamador da sub-rotina.

Transfere o fluxo de processamento para a instrucao

seguinte a chamada da sub-rotina.
x Desempilha o endereco armazenado na pilha e o coloca no registrador PC.

Sintaxe: RET

"

Fluxo da Chamada de Sub-rotina

Arquitetura de Computadores (17)

End. | Instr. End. Instr.
1000 | mov al.1 pilha recebe 1007 (retorno) e IP recebe 1110 1110 | shial,1
1002 | mov bl.3 1112 | add al,bl
1004 | call calculo 1114 | and al,7
1007 | mov ah,2 g 1116 | add al, 0"
1009 1 int 21h IP recebe 1007 (topo da pilha) i L

Exemplo: Impressao de Texto

.model small
.stack 200h
.data
mens1 db 'Bom dia',13, 10, 0
mens2 db 'Boa tarde', 13, 10, 0
mens3 db 'Boa noite', 13, 10, 0
.code
inicio PROC NEAR
mov ax,@data
mov ds,ax
mov bx, OFFSET mens1
call imprime
mov bx, OFFSET mens2
call imprime
mov bx, OFFSET mens3
call imprime

mov ah,4ch

int 21h
inicio ENDP

imprime proc near
repete:
mov dl,[bx]
and dl,dl
jz fim
inc bx
mov ah,02h
int 21h
jmp repete
fim:
ret
imprime endp
end inicio

" S
Instrucoes de Desvio e Salto

+ Desvios e saltos podem ser implementados por uma
das instrucoes de JUMP ou pelo comando LOOP.

Normalmente adiciona-se rétulos (label) as instrucoes para
indicar os pontos de desvio.

Instrucao JMP: realiza o desvio incondicional no fluxo
de execucao do programa.

x Sintaxe: JMP Dest
Dest: proxima instrugcdo a ser executada.

Instrucoes J?7?: realizam desvios condicionais no fluxo
de execucao do programa de acordo com os bits de flag.

x Existe varias instrugdes deste tipo, algumas gerais, outras
especificas para n° cardinais (sem sinal) ou n° inteiros (com sinal).

x Sintaxe: J?7? Dest

" J
Exemplos de Desvios Condicionais (J?7?)

Unsigned (Cardinal)

JUMPS (flags remain unchanged)
Name

Comment

Code

JA Jump if Above JA Dest i= JNBE) JG Jump if Greater JG Dest = JNLE)
JAE Jump if Above or Equal JAE Dest i=JNBE=JNC) WJGE Jump if Greater or Egual JGE Dest (= JNL)
JB Jump if Below JB Dest i=JNAE=JC) Q1L Jump if Less JL Dest = JNGE)
JBE Jump if Balow or Equa JBE Dest i= JNA) JLE Jump if Lass or Equa JLE Dest (= JNG)
JHA Jump if not Above JNA Dest i= JBE) JNG Jump if not Greater JNG Dest = JLE)
JMAE Jump if not Above or Equal | JNAE Dest | (= JB=JC) JNGE Jump if not Greater or Equa JNGE Dest [i{=J0L)
JNEB Jump if not Below JHE Dest i=JAE =JNC) JJJNL Jump if not Less JML Dest = JGE)
JMBE Jump if not Below or Egual | JNBE Dest | (= JA) JNLE Jump if not Leszs or Equal JMLE Dest | (=JG)
JGC Jump if Garry JC Dest JO Jump if Cverflow JO Dest
JNG Jump if no Carry JHE Dest JNO Jump if no Overflow JMO Dest

J5 Jump if Sign (= negative) J5 Dest

JNS Jump if no Sign (= positive) JNS Dest

Operation [IName

Comment

Code

Operation

Jump if Equal

Jump if not Equal

JNE Dest

(= JNZ)

Jump if Zero JZ Dest Jump if not Zero JNZDest | (=JNE)
JOXZ | Jump if CX Zero JCXZ Dest JECXZ | Jumpif ECX Zero JECKZ Dest 308
JP Jump if Partty (Parity Even) | JP Dest (= JPE) JNP Jump if no Panty (Panty Odd) | JNP Dest | (=JPO)
JPE Jump if Parity Even JPEDest | (=JP) JPQ Jump if Parity Ocd JPODest | (= JNP)

" S
Instrucoes de Desvio e Salto

+ Instrucao LOOP: realiza desvios para a construcao de lacos
de repeticao (iteracao) no programa.
Decrementa o valor de CX, e se NAO for zero, desvia para o label.
Sintaxe: LOOP Dest

EX: MOV CX,10 ; Contador = 10

MOV SI,1000 ; Sl aponta para endere¢o 1000 da memoria
MOV DI,2000 ; DI aponta para 2000

TRANSF: MOV AL,[SI] ; Pega um byte da origem
MOQV [DI],AL ; Guarda no destino
INC Sl ; Incrementa ponteiros
INC DI
LOOP TRANSF ; Dec CX e se # zero vai para TRANSF

+ Variagoes: LOOPE, LOOPNE, LOOPZ e LOOPNZ.

Fazem um teste no bit Zero do registrador de flags:
x Se a condigao for satisfeita, executa o LOOP.
x Caso contrario, termina a iteracéao.

" S
Outras Instrucoes

+ Instrucoes CBW e CWD: realiza a conversao do tipo byte
para word e de word para double word, respectivamente.
CBW expande o conteudo de AL para AX.
CWD expande o conteudo de AX para DX:AX.
Trabalham sobre n° inteiros (com sinal) em complemento 2.
Sintaxe: C??

+ Instrucao XCHG: troca o valor dos operadores.
Sintaxe: XCHG Op1,0p2

+ Instrucao LEA: obtém o endereco efetivo de uma variavel ou
rotulo.
Equivalente ao & na linguagem C.
Sintaxe: LEA Dest,Orig

x Dest recebe o enderecgo de Orig.

"
Interrupcoes da BIOS

+ Instrucao INT: executa uma interrupcao de SW.

Primeiros 1024 bytes da memodria sao reservados para o vetor de
interrupgoes, com 256 elementos.

x Cada elemento € composto de 4 bytes (2 para indicar um segmento e
2 para indicar um offset).

x Corresponde ao endereco de uma funcao do S.0O. encarregada de um
determinado servico.

+ Exemplos:
Interrupcao 10h: placa de video.
Interrupcao 16h: teclhado
Interrupcao 21h: servicos do DOS.
Interrupcao 33h: mouse.

+ Capitulo 13 da apostila The Art of Assembly descreve as
chamadas de servigco da BIOS (INT 16h e INT 10h), usadas
para leitura e escrita de dados fornecidos pelo usuario.

"
Interrupcao 21h

+ Utilizada no MS-DOS para varias chamadas de funcoes
basicas de acesso a disco e E/S.

+ Comando: int 21h ;invoca a interrupgcao do DOS

+ Registrador AH indica qual € a operacao desejada:

Leitura de um caractere do teclado (AH = 01h)
x Saida: AL = caractere (ASCIl em hexa)
Escrita de um caractere na tela (AH = 02h)
x Entrada: DL = caractere a ser escrito
x Saida: nenhuma
Escrita de uma string na tela (AH = 09h)
x Entrada: DX = endereco para o inicio da string

x Saida: nenhuma
x O final da string deve ser determinado pelo caractere ‘$’.

Encerra o programa e retorna ao S.O. (AH = 4Ch)
x Saida: nenhuma

=
Exerciclos

1. Escreva um programa que mostre na tela os 256
caracteres do codigo ASCII.

2. [Escreva um programa que receba dois numeros
entre 0 e 9 do teclado e apresente o maior deles.

3. Escreva um programa que receba um numero
Inteiro e retorne se 0 numero € par ou impar.

4. Escreva um programa que recebe uma string de
no maximo 30 caracteres e a escreva com letras
maiusculas (obs: tecla ENTER encerra a string).

5. Escreva um programa que receba uma expressao
aritmeética na forma infixa (ex: A+B*C) e a retorne
na forma pos-fixa (ex: ABC*+).

	Organização de Computadores 1
	Sistemas Numéricos
	Programação
	Arquitetura 8086
	Arquitetura 8086
	Registradores (Processador 8088/8086)
	Registradores (Processador 8088/8086)
	Registradores (Processador 8088/8086)
	Registradores (Processador 8088/8086)
	Organização dos Registradores – Família Intel
	Segmentação da Memória
	Segmentação da Memória
	Exemplo de Utilização do Segmento
	Exercícios
	Linguagem Assembly
	Por que Utilizar?
	Programa Montador (Assembler)
	Criação de Programas em Assembly
	TASM – Turbo Assembler
	Montagem sem Depuração
	Montagem para Depuração
	Estrutura Básica de um Programa
	Exemplo de Programa
	Modelos de Memória
	Declaração de Dados
	Declaração de Dados
	Declaração de Dados
	Acesso a Dados
	Transferência de Dados
	Transferência de Dados
	Instruções de E/S
	Utilização da Pilha em Assembly
	Instruções de Manipulação da Pilha
	Instruções de Transferência de Dados
	Modos de Endereçamento
	Modos de Endereçamento
	Acesso aos Dados
	Acesso aos Dados
	Instruções Aritméticas
	Exemplo: Soma de 2 nº Extensos
	Instruções Aritméticas
	Instruções Aritméticas
	Instruções Aritméticas
	Instruções Aritméticas
	Instruções Lógicas
	Deslocamentos e Rotações
	Deslocamentos e Rotações
	Instruções de Chamada de Sub-rotinas
	Fluxo da Chamada de Sub-rotina
	Exemplo: Impressão de Texto
	Instruções de Desvio e Salto
	Exemplos de Desvios Condicionais (J??)
	Instruções de Desvio e Salto
	Outras Instruções
	Interrupções da BIOS
	Interrupção 21h
	Exercícios

